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When an electron collides with an atom or ion, it may

• excite the atom/ion (I + e→ I∗ + e)

• ionize the atom/ion (I + e→ I+ + 2e)

• scatter inelastically (I + e→ I + e+ γ)

• recombine radiatively (I + e→ I− + γ)

• recombine dielectronically (I + e→ I−∗)

This memo will focus on the penultimate process, where an electron collides
and recombines with an ion, emitting a photon in the process. The energy of
this photon will equal the kinetic energy of the electron plus the binding energy
of the newly-recombined electron. Since the kinetic energy of the electron is not
quantized, this forms a continuous spectrum with sharp edges at the binding
energy of the levels.

The power emitted per keV by this process is (Tucker & Gould 1966):

dE

dtdV dω
=
dP

dE
= nenZ,j+1Eγσ

rec(Ee)ve
f(v)dv
dEγ

(1)

where ne is the electron density, nZ,j+1 is the density of the ion (Z,j+1) (where
Z is the atomic number of the ion, and j+1 is the ionization state), Eγ is the
energy of the emitted photon, σrecn (Ee) is the recombination cross section to
level n at the electon energy Ee, ve is the electron velocity and f(v)dv is the
number of electrons with velocities in the range (v, v+ dv). In most cases, f(v)
is the Maxwell-Boltzman distribution,

f(v)dv = 4π
( m

2πkT

)3/2

v2 exp(−mv
2

2kT
)dv (2)

Equation (1) can be simplified considerably. If we define IZ,j,n to be the
binding energy for an electron in level n of the ion (Z, j), and use the fact that
Ee = 0.5mev

2
e , we get that

dve
dEγ

=
1

meve
(3)
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Using this result, and substituting the Maxwell-Boltzman equation for f(v),
we can rewrite (1) as

dP

dE
= nenZ,j+14

(Eγ − IZ,j,n
kT

)√ 1
2πmekT

σrecn (Eγ−IZ,j,n) exp(−Eγ − IZ,j,n
kT

)Eγ

(4)
Equation (4) completely describes the spectrum of the radiative recombi-

nation continuum (RRC). However, cross sections for recombination are not
generally calculated by the atomic physics community; photoionization cross
sections are. As photoionization and recombination are inverse processes,

IZ,j,n + γ
←→ IZ,j+1 + e− (5)

they can be related using detailed balancing. Raymond & Smith (1977) state
that:

σphZ,j,n(ν)
σrecZ,j,n(ve)

=
m2
ec

2v2
e

E2
γ

gZ,j+1

gZ,j,n
. (6)

Here, σphZ,j,n(ν) is the photoionization cross section for the ion (Z, j) in state n
for a photon with frequency ν, and σrecZ,j+1(ve) is the recombination cross section
for an electron with velocity ve to combine with an ion (Z, j+1) (assumed to be
in the ground state) to create an ion (Z, j) in state n. Additionally, me is the
mass of the electron, c the speed of light, Eγ is the energy of the photon, and
gZ,j+1 and gZ,j,n are the statistical weights for the (Z, j + 1) ion in its ground
state and the (Z, j) ion in state n, respectively.

Detailed Balance

Equation (6) can be derived from first principles, as was first shown by Milne
(1924). We begin with the assumption that the system is in thermal equilibrium.
In this case the emission due to spontaneous and stimulated recombination is
balanced by the ionization of the recombined ions (see also Cowen 1980; Shu
1991):

nZ,j,n
4πBν(T )

hν
σphZ,j,n(ν)dν = vefe(ve)nenZ,j+1

{
σrecZ,j+1(v) + αstimBν(T )

}
(7)

Here, Bν(T ) is the Planck blackbody emission function, and f(v) is the Boltz-
man equation (2). The αstim term allows for stimulated recombination. Written
in expanded form, Equation (7) becomes

nZ,j,nσ
ph(ν)

8πhν3/c2

e
hν
kT − 1

dν = 4πv3
[ me

2πkT

]3/2
exp(−mev

2

2kT
)dvnenZ,j+1

{
σrec(v)+αstim(v)

2hν3/c2

e
hν
kT − 1

}
.

(8)
Cancelling common terms and solving for σph(ν), we get

σph(ν) =
nenZ,j+1

nZ,j,n
(e

hν
kT −1)

c2v3

2ν2

( me

2πkT

)3/2

exp(−mev
2

2kT
)
dv

dν

{
σrec(v)+αstim(v)

2hν3/c2

e
hν
kT − 1

}
(9)
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Equation (9) can be simplified further using the Saha equation

nZ,j+1

nZ,j,n
=

2gZ,j+1

gZ,j,n

(2πmekT )3/2

h3ne
exp(−IZ,j,n

kT
), (10)

which is applicable because of the assumption of thermal equilibrium. Substi-
tuting this in gives

σph(ν) =
2gZ,j+1

gZ,j,n

(2πmekT )3/2

h3

c2v3

2ν2

( me

2πkT

)3/2

exp
(
−

1
2mev

2 + IZ,j,n

kT

)dv
dν

{
σrec(v)+αstim(v)

2hν3/c2

e
hν
kT − 1

}
.

(11)
This can be simplified further by cancelling common factors, and we also use
the relationship hdν = mevdv to get:

σph(ν) =
gZ,j+1

gZ,j,n

m2
ec

2v2

h2ν2
exp(

hν

kT
)
{
σrec(v)(exp(

hν

kT
)− 1) + αstim(v)

(2hν3

c2
)}

(12)

=
gZ,j+1

gZ,j,n

m2
ec

2v2

h2ν2

{
σrec(v) + exp(− hν

kT
)
(
αstim(v)(

2hν3

c2
)− σrec(v)

)}
(13)

But since σrec(v) and αstim(v) are atomic constants, they cannot depend
on the temperature of the medium, or on its equilibrium state. Therefore the
following relationship must hold:

αstim(v) =
c2

2hν3
σrec(v), (14)

which leads to our desired result, Equation (6).

Spectral Calculation

Radiative recombination gives rise to a continuum of emission, with a minimum
energy equal to the binding energy of the ion in its final state. The power
emitted per unit energy at an energy Eγ is given by

dP

dE
(Eγ) = nenZ,j+1Eγσ

rec
Z,j+1→Z,j,n(Ee)vef(v)

dv

dEγ
, (15)

where Ee is the initial electron energy, and ve the initial electron velocity. Using
Equation (6), we can restate this in terms of the photoionization cross section
σphZ,j,n:

dP

dE
(Eγ) =

4π
c2

(2πmekT )−3/2nenZ,j+1E
3
γ

gZ,j,n
gZ,j+1

exp(−Eγ − IZ,j,n
kT

)σphZ,j,n(Eγ).

(16)
After substituting in values for the constants, we get:

dP

dE
(Eγ) = 1.31×108erg cm/s/keV nenZ,j+1(

Eγ
keV

)3 gZ,j,n
gZ,j+1

exp(−Eγ − IZ,j,n
kT

)(
T

1K
)−3/2σphZ,j,n(Eγ).

(17)
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Practical Consideration

Given the photoionization cross section, the ionization energy, and the statistical
weights of the levels involved it is trivial to use Equation (17) to calculate the
emission due to radiative recombination. However, a number of complications
remain:

1. The photoionization cross sections have not been calculated for all levels
of all ions.

2. Each ion has an infinite number of bound states which an electron could
recombine into; some method of cutting off the level calculation must be
done.

3. Calculating the power emitted per energy bin should properly be done as
an integral of dP/dE over the bin. However, this requires a substantial
amount of computation that will slow down the entire code.

We will consider each of these problems and discuss how they have been ad-
dressed.

Cross Sections

The most substantial problem in creating any plasma emission code is the lack
of accurate atomic data. Verner & Yakovlev (1995) used a Hartree-Dirac-Slater
(HDS) code to calculate the partial photoionization cross section for all subshells
nl of all ions with Z ≤ 30. We use these results to calculate recombination to
the ground state of each ion. A subsequent paper (Verner et al. 1996) enhanced
these results near threshold by including data from the Opacity Project. How-
ever, much of the improvement is due to including autoionization resonances.
In the context of recombination, these will be considered in this code as dielec-
tronic recombination, not radiative recombination. Therefore, for our purposes
the HDS code data which does not include resonances is more appropriate.

Calculating recombination to non-ground states requires data on the cross
section of excited ions. In the case of hydrogenic ions, the exact cross section
can be calculated (Karzas & Latter 1961; Boardman 1964). However, for more
complex ions, only very limited data is available. The most complete set of
data is by Clark, Cowan, & Bobrowicz (1986), who calculated the configuration-
averaged photoionization cross sections for all subshells between 1s and 5g for
He-like through Al-like ions. One restriction on the data, however, is that it is
only valid for ions more than three times ionized. As a result of the configuration
averaging, however, some important data is not available. For example, a triplet
of lines from the n = 2 level of He-like ions exists that is very strong in many
astrophysical environments. It consists of a resonance line (1s2p 1P1 → 1s2

1S1), a forbidden line (1s2s 3S1 → 1s2 1S1), and an intercombination line (1s2s
3P1 → 1s2 1S1). In addition, the n = 2 level also has the strictly forbidden
transition 1s2s 1S1 → 1s2 1S1 which gives rise to two-photon emission. The
Clark et al. data, however, does not distinguish between the triplet and the
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singlet states, and so will not allow us to calculate the ratio of the forbidden
and resonance lines.

Table 1 lists the sources of the cross sections used in the code to date. The
most important issue for the code is not the calculation of the continuum emis-
sion, which (except in the case of a photoionized plasma) is usually smaller than
the bremsstrahlung emission. Rather, recombination can affect level populations
and thereby change line ratios.

Level Cutoffs

Each ion has an infinite number of bound states but also has a finite total
recombination rate. Therefore, the cross section for recombination must drop
rapidly as a function of n. Of course, as stated above very little data exists
beyond the ground state recombination rate. Despite this shortage of data on
cross sections on excited ions, we can approximate the recombination to excited
levels when necessary by using a hydrogenic model (see Péquignot, Petitjean, &
Boisson 1991). This is also the method used by SPEX (Mewe & Kaastra 1994).
However, we use a different method than theirs to determine the maximum level
to consider for recombination.

The maximum radiative RRC occurs near the ionization energy of the level,
since that is where the cross section tends to be large and because of the ex-
ponential damping term (see Eq. 4). Therefore, when asking if recombination
to a given level will be important we can examine only the case of zero-energy
electrons, where the emitted photon’s energy comes entirely from the binding
energy of the level. In this case, we care only about the hydrogenic cross section
at threshold. Using Kramer’s semiclassical approximation, this is

σn(Eth) = 7.91× 10−18 cm2 n

Z2
eff

(18)

where Zeff is the is the atomic number Z of the element under consideration
minus the number of electrons j screening its charge. When we use this approx-
imation to the cross section, Equation (17) becomes:

dP

dE
(IZ,j,n) = 1.31× 108erg cm/s/keV nenZ,j+1(

IZ,j,n
keV

)3 gZ,j,n
gZ,j+1

(
T

1K
)−3/2σphZ,j,n(IZ,j,n)(19)

≈ 5.21× 10−15erg cm3/s/keV nenZ,j+1(
Z4

eff

n3
)

1
gZ,j+1

(
T

1K
)−3/2 (20)

where we also used the fact that gZ,j,n = 2n2. As this shows, the importance of
higher n states to the radiative recombination continuum drops off as 1/n3.

To decide where to stop calculating the recombination continuum, we com-
pare the RRC emission at threshold to the bremsstrahlung emission at the
same energy. If the RRC emission is less than some chosen fraction of the
bremsstrahlung for this level, then we assume that recombination to this and
all higher levels of this ion are negligible. We still must do a study to dis-
cover the appropriate value of this constant, and how much emission
is missed for a given value.
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Integrating dP/dE

After the choice of data is made and the maximum n level to calculate recom-
bination to has been chosen, one further issue exists: how to estimate the total
emission in a given energy bin. The exact method would be to integrate the
emission over the bin:

ΛRRC(Ebin) =
∫ E1

E0

dP

dE
(E)dE (21)

where E0, E1 are the minimum and maximum energies for the bin, respectively.
However, doing a numerical integration is slow and if dP/dE is nearly constant
over the bin energies, unnecessary.

We calculate the emission as follows:

1. Calculate the emission at the bin edges

2. If the two results differ by less than some constant ε, average them and
multiply by the bin width to get the total emissivity.

3. If the results differ by more than ε, then use a numerical integration routine
to calculate the emissivity.

4. If a numerical integration is used, the code returns a low-level warning
to the user (which may be safely ignored) suggesting that a finer binning
should be used to measure the RRC emission accurately.

We still need to make an estimate of what ε should be.
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Table 1: Sources of photoionization cross section data for all levels
Ion H He C N O Ne Mg Al Si S Ar Ca Fe Ni
I H
II N H
III - N
IV - -
V - - C C C C C C C C
VI - - H C C C C C C C C
VII - - N H C C C C C C C
VIII - - - - H C C C C C C C
IX - - - - N C C C C C C C
X - - - - - H C C C C C C
XI - - - - - N C C C C C C
XII - - - - - - H C C C C C
XIII - - - - - - N H C C C C
XIV - - - - - - - N H C C C C
XV - - - - - - - - N C C C C
XVI - - - - - - - - - H C C C C
XVII - - - - - - - - - N C C C C
XVIII - - - - - - - - - - H C C C
XIX - - - - - - - - - - N C C C
XX - - - - - - - - - - - H C C
XXI - - - - - - - - - - - N C C
XXII - - - - - - - - - - - - C C
XXIII - - - - - - - - - - - - C C
XXIV - - - - - - - - - - - - C C
XXV - - - - - - - - - - - - C C
XXVI - - - - - - - - - - - - H C
XXVII - - - - - - - - - - - - N C
XXVIII - - - - - - - - - - - - - H
XXIX - - - - - - - - - - - - - N

Sources:

H Exact hydrogenic solution available

C From Clark, Cowen & Bobrowicz, 1986, ADNDT, 34, 3, 419

N None needed; no electrons to photoionize.
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