
Calculating Level Populations of Ions in a Hot
Plasma

Calculating the level population of an ion in collisional ionization equilibrium
is conceptually quite simple. The most trivial example is that of a two level ion,
with a ground state (1) and an excited state (2). In this case, the level population
is calculated by balancing the excitation and de-excitation rates. Assume the
collisional excitation rate is γ1→2(T ) cm

3 s−1, the collisional de-excitation rate
is γ2→1(T ) cm

3 s−1, and the radiative rate is A2→1 s
−1. Then in equilibrium the

excitation rate equals the de-excitation rate so:

nep1γ1→2 = nep2γ2→1 + p2A2→1 (1)

where p1 and p2 are the fractional level populations of level 1 and 2, respectively.
In the case of a two-level atom, balancing the excitations and de-excitations into
the ground state or the excitated state gives identical equations. This is not the
case for atoms with more than 2 levels, however, as will be seen.

Continuing, we can solve equation (1) for p2/p1 we get

p2
p1

=
neγ1→2

neγ2→1 +A2→1
. (2)

Finally, using the requirement that p1 + p2 = 1, we get:

p1 =
neγ2→1 +A2→1

ne(γ2→1 + γ1→2) +A2→1
(3)

p2 =
neγ1→2

ne(γ2→1 + γ1→2) +A2→1
(4)

We can now consider the slightly more complex example of a three-level
atom. In this case, we will have a larger number of excitation and de-excitation
rates: γ1→2, γ1→3, γ2→3, γ3→1, γ3→2, γ2→1, A2→1, A3→1, and A3→2. The
method remains the same, however: in equilibrium, the excitation and de-
excitation rates out of each level are balanced. Therefore, we can write the
following equations:

p1 + p2 + p3 = 1 (5)

ne(p2γ2→1 + p3γ3→1) + p2A2→1 + p3A3→1 = nep1(γ1→2 + γ1→3) (6)

ne(p1γ1→2 + p3γ3→2) + p3A3→2 = nep2(γ2→1 + γ2→3) + p2A2→1 (7)

ne(p1γ1→3 + p2γ2→3) = nep3(γ3→2 + γ3→1) + p3(A3→1 +A3→2)(8)

We now have four equations but only three variables (p1, p2, and p3). This
system is degenerate, and so one equation must be removed. This must be
done with some care, however. Assume we randomly select a level i and remove
it from the equations to be solved. If Ai→j ≡ γi→j ≡ γj→i ≡ 0 for all j,
then level i is not connected to any other level. Levels of this type must be
removed from the level population calculation in any event, but removing it
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will not remove the degeneracy. The only level which we can guarantee will be
connected to others is the ground state level. Therefore, removing the ground
state balancing equation when calculating the level population assures that the
population equations will be soluble.

Equations (8) can be written in matrix form, as follows: 1 1 1
neγ1→2 −ne(γ2→1 + γ2→3)−A2→1 neγ3→2 +A3→2

neγ1→3 neγ2→3 −ne(γ3→1 + γ3→2)−A3→2 −A3→1

 p1
p2
p3

 =

 1
0
0


(9)

Solving for the level population, then, is done by inverting this matrix e-
quation. This method can easily be extended to n levels. Note the density
dependence is explicitly included, since it affects the collisional rates but not
the radiative rates.

Equation (9) covers the case of an ion in isolation. However, ionization and
recombination can affect the results. Ionization to an excited level can occur,
but is rare. However, recombination to an excited state can and does regularly
happen, via two different processes: radiative recombination and dielectronic
recombination. We will consider these separately.

In the case of radiative recombination to an excited level, the rate for re-
combination to the nth level is αRR

n , in units of cm3/s. The total rate per unit
volume is nenI+αRR

n , where nI+ is the density of the ionized atom.
Dielectronic recombination occurs when an electron recombines and simulta-

neously excites an electron in the recombined atom, resulting in a doubly-excited
state. This can be resolved by auto-ionization or by radiative stabilization. In
this latter case, first one electron radiatively transitions to a lower level (cre-
ating a satellite line) and then the atom is left in a singly excited state. The
rate for such recombinations can be written as αDR

n nenI+ , in recombinations
per second.

The total recombination rate to an excited level n is therefore nenI+(αRR
n +

αDR
n ). We can now re-write equations 5-8 including this term and get:

p1 + p2 + p3 = 1 (10)

ne(p2γ2→1 + p3γ3→1) + p2A2→1 + p3A3→1 + ne(α
DR
1 + αRR

1 )
nI+

nI
= nep1(γ1→2 + γ1→3) (11)

ne(p1γ1→2 + p3γ3→2) + p3A3→2 + ne(α
DR
2 + αRR

2 )
nI+

nI
= nep2(γ2→1 + γ2→3) + p2A2→1(12)

ne(p1γ1→3 + p2γ2→3) + ne(α
DR
2 + αRR

2 )
nI+

nI
= nep3(γ3→2 + γ3→1)

+ p3(A3→1 +A3→2) (13)

Since this rate is not proportional to the any of the level populations of
the recombined atom, it cannot be in the N × N matrix, but rather must be
on the right hand side of the equation. In addition, all the rates in equation
(9) are proportional to the atom density nI , while the recombination rates are
proportional to nI+ . This requires adding the factor of nI+/nI seen above.
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Therefore in the case of the 3 level atom, we have for the matrix formulation: 1 1 1
neγ12 −ne(γ21 + γ23)−A21 neγ32 +A32

neγ13 neγ23 −ne(γ31 + γ32)−A32 −A31

 p1
p2
p3

 =

 1
−ne

nI+

nI
(αRR

2 + αDR
2 )

−ne
nI+

nI
(αRR

3 + αDR
3 )


(14)

Note that arrows have been left out of the subscripts; γ21 should be read as
γ2→1.
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