Constraining the power of X-ray wind in NGC 4051:

a Bayesian approach

Anna Ogorzalek

UMCP / NASA Goddard

S. Allen, **A. L. King**, J. Miller,

J. Raymond, D. Wilkins

NGC 4051

Some of the longest Chandra **HETG** datasets:

- 700 ks from 2016
- 300 ks from 2008

$$\rightarrow$$
 z = 0.002336

⇒
$$z = 0.002336$$
 ⇒ $L_{BOL} \approx 2 - 4\% L_{EDD}$
⇒ $log(M_{BH}/M_{\odot}) = 6.13$ ⇒ Abundant absorption

$$\rightarrow$$
 L_{BOL} $\approx 2 - 4\%$ L_{EDD}

Collinge+01, Krongold+07, Steenbrugge+09, Nucita+10, Lobban+11, Pounds+11, King+12, Silva+16, Mizumoto+17

Bayesian approach

- Using MCMC
- Open parameter space
- Self-consistent
- Robust model selection

Line width / ionization / density / column density

Six absorbers in both dataset

First detection of a collisional absorber

See also: King+2004,2013; Maksym+2019

Ogorzalek+2020A, in prep.

Impact on galaxy

- → Gas located as close as ~few 100s gravitational radii
- → Outflow power as high as ~10%* of bolometric luminosity (*geometry dependent)

 How to explore parameter space faster for PIE models?

 How to quantify atomic data systematic uncertainty in model-dependent self-consistent fitting?