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Fe16+ (Fe XVII) line emission problem

Fe XVII 2p – 3d
3C (resonance line)and 
3D (intercombination
line)

~15 Å

Image: Chandra Space Telescope, NASA/CXC/NGST Spectrum: E. Behar et al., ApJ (2001)

2p – 3d

2p – 3s

3D3C

Very Crucial for
• plasma temperature
• density
• turbulence velocity
• plasma opacity
diagnostics…

Fe16+ ions emit strongest soft X-ray diagnostic 
lines seen in space

Fe XVII 2p – 3s
3F + 3G
and 
M2 (forbidden line)

~17 Å



Beiersdorfer et al., ApJ (2002, 2004) Brown et al., ApJ (2001) de Plaa et al., A & A (2012) Bernitt et al., Nature (2012)

Disagreements between Observations and Models and 
between Experiments and Theoretical calculations. 

Is theory/Model wrong?  Which part? 

3C/3D ratio have defied atomic and plasma theory for nearly 40 years

I (
3C

) /
 I(

3D
) Calculations / Models



Neutral atoms or molecules

Classical Spectroscopy using EBITs

Image: S. Bernitt

Electron beam drives ionization, excitation, 
recombination, and traps the ions
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Neutral atoms or molecules

same as coronal plasmas
nelectron ~ 109-13 /cm3

nion ~ 106-8 /cm3

Key advantage :

purely photonic excitation 
suppresses uncertainties arising 
from collisional excitation

Image: S. Bernitt

Laser Spectroscopy using EBITs



LCLS undulator hall

LCLS Stanford campaign 
(World’s first and most powerful FEL Free Electron Laser)

EBIT at SXR

Image: J. Crespo



Soft X-ray beam from LCLS

FLASH-EBIT at soft X-ray beamline (LCLS)

Image: J. Crespo



Measurement Technique

3D 3C

EBIT: production and trapping of highly charged ions
X-ray laser: photo-excited trapped highly charged ions

Bernitt et al., Nature 492, 225 (2012)



Theoretical oscillator
strength ratios 3C/3D 

Experimental oscillator
strength ratio 3C/3D

3s away from best theory

Experiment solves (serious) old problem

Conclusion: 
Inaccurately predicted oscillator strengths for 3C and 3D are the
root cause of the long-standing discrepancy between
models and astrophysical observation and laboratory measurements

Bernitt et al., Nature 492, 225 (2012)



Experiment solves (serious) old problem (May be?)



Reason 1: Non-linear Dynamics?

Femtosecond X-ray laser with 
intensities above ~1012 W/cm2, 

then upper state population of  
(3C and 3D) states cannot reach 
equilibrium…

3C

3D

Laser Intensity
1012 W/cm2

Reason 2:
Population transfer?
between Fe15+ and Fe16+ due 
to strong autoionization 
channel, feeding the Fe15+ C-
line blended with 3D
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PETRA III Synchrotron at DESY, Hamburg



• Permanent Magnet
• Small and Easy to transport
• Off-Axis Gun

• B ~ 0.86 T
• can produced ions up to

Fe24+

EBIT Synchrotron photon beam

Only 10
5 W/cm

2

No Nonlinear effects!

P. Micke, S. Kuehn, et al., RSI 89, 063109 (2018)

Image: S. Bernitt



Improvement in Resolution: 10x better than Chandra

Resolved Fe15+ C-line for
the first time 

(Usually blended with
Fe16+ 3D line)



Measurement technique



Different theories
available from literature
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Final result vs. Exp. vs. Obs. vs. Models and Theories

f (3C) / f(3D) = 3.09(8)(6)

still 5s away
from the best

converged
calculations



Results on the Fe XVII problem

ü This new experiment reinstate the 
40-year problem with 5 sigma discrepancy 
and 3 % uncertainty

ü Low oscillator strengths are still a root 
cause of this problem (as our previous 
experiment found).

arXiv:1911.09707



What’s next for the Fe XVII problem?
Investigate individual oscillator strengths of 3C and 3D rather than their ratio.

Oct 2019 beamtime:

We improved resolution:
~18 000 Resolving power at 
line 3C

The instrumental profile 
(beamline) is still a problem 
at very high resolution…
~ 30 000 RP at O-w line

We plan to investigate this problem in the upcoming beamtime in November 
2020 at PETRA III P04.

3C
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O I (2p-1s): 𝟐𝟑. 𝟓𝟎𝟐 ± 𝟎. 𝟎𝟎𝟏 A

O I (2p-1s):
Chandra ~527.4 eV
XMM-Newton ~527.3 eV

Chandra observations of atomic O I 2p-1s absorption in ISM – backlit by bright X-ray binaries

Issue with the atomic oxygen O I 
velocity in the interstellar medium



Laboratory rest energy O I
~ 𝟓𝟐𝟔. 𝟕𝟗 ± 𝟎. 𝟎𝟒 𝐞𝐕

If we treat this discrepancy as a 
real astrophysical Doppler shift,

This would lead to a conclusion 
that the atomic oxygen along 
many line of sight is moving 
away from us at velocity of ~ 
𝟑𝟎𝟎 − 𝟑𝟓𝟎 𝐤𝐦/𝐬

High-resolution lab measurements at ALS (O I  1s à 2p)

Difference to line-of-sight 
average observed value from 
XMM and Chandra is 
~ 𝟓𝟎𝟎 − 𝟔𝟎𝟎𝐦𝐞𝐕



ALS calibrated using molecular oxygen
Rydberg series [1, 2]

O2 inner shell absorption
using a electron energy loss

spectroscopy [1, 3]

O2 Auger line @ 491.9 eV [4]

Calibrated

Ar LMM @ 200 eV [5] 

Kr MNN [6]

Calibrated

Calibrated

Atomic Oxygen 
Calibrated

[1] Brion et al., 1974
[2] Stolte et al.,  1997
[3] Bizau et al., 2015
[4] Larsson et al., 1990
[5] Werme et al., 1982

High-resolution lab measurements at ALS (O I  1s à 2p)

Using Highly Charged
Ions to calibrate the
synchrotron photon

beam



Experimental setup at BESSY Synchrotron in Berlin



Results
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Results

ALS value à 526.79 ± 0.04 eV
Our value à 527.26 ± 0.04 eV

------------------------------------------------------
Differenceà 0.47 ± o.o6 eV

New O I 1s-2p lab value agrees with XMM and Chandra
and

atomic oxygen is moving as expected at ~ 0 km/s
Leutenegger et al., arXiv:2003.13838 



Photo-excitation in He- and Li-like Oxygen

DD/TEOP
K𝜷𝟐 branching ratio 
= 1.73 +/- 0.19

[1s2 2s] ⇆ [1s 2s 3p]*

Togawa et al., arXiv:2003.05965 



[1s2 4s]
n=1

n=2

n=3
n=4
n=5

TEOP DECAY
AT

~574 eV**

**close to
O VII resonance 
line at ~573 eV

TEOP transitions are crucial for the plasma modeling

[1s 2s 5p]*
n=1

n=2

n=3
n=4
n=5

~680 eV

[1s2 2s] à

analogues to DR satellite w/ recombination into n=5 

ü TEOP processes dominate over allowed
Auger and Radiative decay channels.

ü TEOP contributions were only explained with
the inclusion of the large set of configurations
in our calculations.

ü Blending with O VII resonance line may affect
the resonance-to-forbidden line ratio.



Thank you for your attention J

arXiv:1911.09707

arXiv: 2003.13838 

arXiv: 2003.05965 

Collaboration:
20 Institutions & ~ 35 authors



Extra Slides



•Photoionization studies from N3+ to Fe23+

•Fe15+...17+ resonance transitions
•Ly-series lines of H-like N, O, and F ions
•Fe Ka in Fe17+...24+ ions excited at 6.7 keV
•Polarization-dependent X-ray fluorescence
•Oscillator strengths, line widths, and branching ratios

What else we have measured with EBITs and Synchrotrons?
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M. C. Simon et al., 
PRL 105 183001 (2010) 

S. Bernitt et al.,
Nature 492, 225 (2012)

J. Rudolph et al.,
PRL 111, 103002 (2013)

Visible M1
Ar13+

Soft X-ray photoionization
Fe14+

FEL 800 eV
Fe16+

Synchrotron 6 keV
Fe24+, 13 keV Kr34+



Togawa et al., arXiv:2003.05965 

Two-Electron One-Photon Transitions in Li-like O5+



31

Systematic Fe-L laboratory experiments

o Electron impact direct excitation
o Dielectronic recombination satellites
o Resonant excitation
o Radiative cascades 
o .....
o

Checking of individual atomic components of 3s and 3d



Electron impact excitation cross sections

Theory overpredicts 3C cross sections
by 20-30% ...

3D seems to be okay!

G. Brown et al. PRL (2006)

ECS hitomi-like microcalorimeter spectrum

Electron-impact excitation cross section



Dielectronic Recombination + Resonance Excitation cross sections

C. Shah et al., ApJ (2019)

Optically thin cross sections – crucial for models



3d (3C + 3D + 3E)

C. Shah et al., ApJ (2019)

3d DW theory 
overpredicts
high-n DR,
RE,
CE cross sections
by roughly ~20% ...

Dielectronic Recombination and Resonance Exc.

RE

DE

DR



C. Shah et al., ApJ (2019)

Resonance Excitation and Cascades
3s (3G + 3F + M2) DW theory looks fine …
The 3s emission is fully dominated by Resonance Excitation and Cascades

RE

DE



Still disagree w/ theory (3C can be a culprit behind) 

C. Shah et al., ApJ (2019)

3s / 3d line ratio

RE

DE
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Systematic laboratory experiments

o Electron impact direct excitation
o Dielectronic recombination satellites
o Resonant excitation
o Radiative cascades 

Checking of individual atomic components of 3s and 3d

Checking the most fundamental quantity of any 
electronic transition

Oscillator strengths ( or Einstein Coefficients A )


