Laboratory X-ray studies with trapped ions using EBITs and synchrotrons #### **Chintan Shah** NASA Goddard Space Flight Center & Max Planck Institute for Nuclear Physics, Heidelberg AtomDB workshop Monday, August 3rd 2020 # Fe¹⁶⁺ (Fe XVII) line emission problem Fe¹⁶⁺ ions emit strongest soft X-ray diagnostic lines seen in space Fe XVII 2p - 3d ~15 Å 3C (resonance line)and 3D (intercombination line) Fe XVII 2p - 3s ~17 Å 3F + 3G and M2 (forbidden line) #### Very Crucial for - plasma temperature - density - turbulence velocity - plasma opacity diagnostics... Image: Chandra Space Telescope, NASA/CXC/NGST Spectrum: E. Behar et al., ApJ (2001) Disagreements between Observations and Models and between Experiments and Theoretical calculations. 3C/3D ratio have defied atomic and plasma theory for nearly 40 years Is theory/Model wrong? Which part? # **Classical Spectroscopy using EBITs** Electron beam drives ionization, excitation, recombination, and traps the ions Laser Spectroscopy using EBITs collector #### Key advantage: purely photonic excitation suppresses uncertainties arising from collisional excitation # LCLS Stanford campaign (World's first and most powerful FEL Free Electron Laser) #### **LCLS undulator hall** # FLASH-EBIT at soft X-ray beamline (LCLS) # Measurement Technique EBIT: production and trapping of highly charged ions X-ray laser: photo-excited trapped highly charged ions # Experiment solves (serious) old problem #### **Conclusion:** Inaccurately predicted oscillator strengths for 3C and 3D are the root cause of the long-standing discrepancy between models and astrophysical observation and laboratory measurements # Experiment solves (serious) old problem (May be?) PRL 113, 143001 (2014) PHYSICAL REVIEW LETTERS week ending 3 OCTOBER 2014 #### Astrophysical Line Diagnosis Requires Nonlinear Dynamical Atomic Modeling Natalia S. Oreshkina, Stefano M. Cavaletto, Christoph H. Keitel, and Zoltán Harman Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Received 3 July 2014; revised manuscript received 19 August 2014; published 29 September 2014) THE ASTROPHYSICAL JOURNAL LETTERS, 801:L13 (5pp), 2015 March 1 © 2015. The American Astronomical Society. All rights reserved. doi:10.1088/2041-8205/801/1/L13 NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA S. D. LOCH¹, C. P. BALLANCE¹, Y. LI¹, M. FOGLE¹, AND C. J. FONTES² Aubum University, Aubum, AL 36849, USA; loch@physics.auburn.edu Los Alamos National Laboratory, MS F663, Los Alamos, NM 87545, USA Received 2014 July 23; accepted 2015 February 9; published 2015 March 2 Non-equilibrium modeling of the Fe XVII 3C/3D ratio for an intense X-ray free electron laser¹ Y. Li, M. Fogle, S.D. Loch, C.P. Ballance, and C.J. Fontes #### **Reason 1: Non-linear Dynamics?** Femtosecond X-ray laser with intensities above ~10¹² W/cm², then upper state population of (3C and 3D) states cannot reach equilibrium... # Reason 2: Population transfer? between Fe15+ and Fe16+ due to strong autoionization channel, feeding the Fe15+ Cline blended with 3D # PETRA III Synchrotron at DESY, Hamburg #### Improvement in Resolution: 10x better than Chandra ## Measurement technique # Final result vs. Exp. vs. Obs. vs. Models and Theories ## Results on the Fe XVII problem - ✓ This new experiment reinstate the 40-year problem with 5 sigma discrepancy and 3 % uncertainty - ✓ Low oscillator strengths are still a root cause of this problem (as our previous experiment found). PHYSICAL REVIEW LETTERS 124, 225001 (2020) **Editors' Suggestion** Featured in Physics arXiv:1911.09707 #### High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem Steffen Kühn®, ^{1,2,*} Chintan Shah®, ^{3,1,†} José R. Crespo López-Urrutia®, ¹ Keisuke Fujii®, ⁴ René Steinbrügge®, ⁵ Jakob Stierhof®, ⁶ Moto Togawa, ¹ Zoltán Harman, ¹ Natalia S. Oreshkina®, ¹ Charles Cheung®, ⁷ Mikhail G. Kozlov®, ^{8,9} Sergey G. Porsev®, ^{8,7} Marianna S. Safronova, ^{7,10} Julian C. Berengut®, ^{11,1} Michael Rosner®, ¹ Matthias Bissinger®, ^{12,6} Ralf Ballhausen, ⁶ Natalie Hell®, ¹³ SungNam Park®, ¹⁴ Moses Chung®, ¹⁴ Moritz Hoesch®, ⁵ Jörn Seltmann, ⁵ Andrey S. Surzhykov®, ^{15,16} Vladimir A. Yerokhin®, ¹⁷ Jörn Wilms®, ⁶ F. Scott Porter®, ³ Thomas Stöhlker®, ^{18,19,20} Christoph H. Keitel®, ¹ Thomas Pfeifer, ¹ Gregory V. Brown®, ¹³ Maurice A. Leutenegger, ³ and Sven Bernitt®, ^{1,18,19,20} ## What's next for the Fe XVII problem? Investigate individual oscillator strengths of 3C and 3D rather than their ratio. Oct 2019 beamtime: We improved resolution: ~18 000 Resolving power at line 3C The instrumental profile (beamline) is still a problem at very high resolution... ~ 30 000 RP at O-w line We plan to investigate this problem in the upcoming beamtime in November 2020 at PETRA III Po4. # Issue with the atomic oxygen O I velocity in the interstellar medium Chandra observations of atomic O I 2p-1s absorption in ISM – backlit by bright X-ray binaries PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE *CHANDRA* GRATING SPECTRA OF XTE J1817-330 E. Gatuzz¹, J. García^{2,3}, C. Mendoza^{1,4}, T. R. Kallman³, M. Witthoeft³, A. Lohfink², M. A. Bautista⁵, P. Palmeri⁶, and P. Quinet^{6,7} Published 2013 April 15 • © 2013. The American Astronomical Society. All rights reserved. O I (2p-1s): $\frac{23.502}{0.001}$ A # A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR ATOMIC OXYGEN T. W. Gorczyca¹, M. A. Bautista¹, M. F. Hasoglu², J. García³, E. Gatuzz⁴, J. S. Kaastra^{5,6}, T. R. Kallman⁷, S. T. Manson⁸, C. Mendoza^{1,4}, A. J. J. Raassen^{5,9} + Show full author list Published 2013 November 26 • © 2013. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 779, Number 1 | Data Set | $1s \rightarrow 2p$ | |-----------------------------------|---------------------| | Astronomical observations | | | Chandra, average of seven sources | 527.44 ± 0.09 | | XMM-Newton, Mrk 421 | 527.30 ± 0.05 | | Juett et al. (2004), six sources | 527.41 ± 0.18 | | Average | 527.37 | | Chandra, Liao et al. (2013) | 527.39 ± 0.02 | O I (2p-1s): Chandra ~527.4 eV XMM-Newton ~527.3 eV #### High-resolution lab measurements at ALS (O 1 15 → 2p) # HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY B. M. McLaughlin^{1,2}, C. P. Ballance³, K. P. Bowen⁴, D. J. Gardenghi⁴, and W. C. Stolte^{4,5,6} Published 2013 June 14 • © 2013. The American Astronomical Society. All rights reserved. The Astrophysical Journal Letters, Volume 771, Number 1 Laboratory rest energy O I $\sim 526.79 \pm 0.04 \text{ eV}$ Difference to line-of-sight average observed value from XMM and Chandra is ~ 500 - 600 meV If we treat this discrepancy as a real astrophysical Doppler shift, This would lead to a conclusion that the atomic oxygen along many line of sight is moving away from us at velocity of \sim 300 - 350 km/s #### High-resolution lab measurements at ALS (O 1 15 → 2p) ## Experimental setup at BESSY Synchrotron in Berlin Leutenegger et al., arXiv:2003.13838 ## Photo-excitation in He- and Li-like Oxygen #### TEOP transitions are crucial for the plasma modeling - ✓ TEOP processes dominate over allowed Auger and Radiative decay channels. - ✓ TEOP contributions were only explained with the inclusion of the large set of configurations in our calculations. - ✓ Blending with O VII resonance line may affect the resonance-to-forbidden line ratio. #### arXiv:1911.09707 PHYSICAL REVIEW LETTERS 124, 225001 (2020) Editors' Suggestion Continued in Physics High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem Steffen Kühn, 1.2.* Chintan Shaho, 3.1.† José R. Crespo López-Urrutia, 1 Keisuke Fujiio, 4 René Steinbrüggeo, 5 Jakob Stierhofo, 6 Moto Togawa, 1 Zoltán Harman, 1 Natalia S. Oreshkinao, 1 Charles Cheungo, 7 Mikhail G. Kozlovo, 89 Sergey G. Porsevo, 87 Marianna S. Safronova, 7.10 Julian C. Berenguto, 1.11 Michael Rosonero, 1 Matthias Bissingero, 126 Ralf Ballhausen, 6 Natalie Hello, 13 SungNam Parko, 14 Moses Chungo, 14 Moritz Hoescho, 5 Jörn Seltmann, 5 Andrey S. Surzhykovo, 15.16 Vladimir A. Yerokhino, 17 Jörn Wilmso, 6 F. Scott Portero, 3 Thomas Stöhlkero, 18.19,20 Christoph H. Keitelo, 1 Thomas Pfeifer, 1 Gregory V. Browno, 13 Maurice A. Leutenegger, 3 and Sven Bernitto, 1.18,19,20 #### arXiv: 2003.05965 Two-Electron-One-Photon Processes Can Dominate over Allowed Intershell Radiative and Auger Decay in Few-Electron Ions M. Togawa,^{1,*} S. Kühn,^{1,2} C. Shah,^{1,3} P. Amaro,⁴ R. Steinbrügge,⁵ J. Stierhof,⁶ N. Hell,⁷ M. Rosner,^{1,2} K. Fujii,⁸ M. Bissinger,⁶ R. Ballhausen,⁶ M. Hoesch,⁵ J. Seltmann,⁵ S. Park,⁹ F. Grilo,⁴ F. S. Porter,³ J. P. Santos,⁴ M. Chung,⁹ T. Stöhlker,^{10,11,12} J. Wilms,⁶ T. Pfeifer,¹ G. V. Brown,⁷ M. A. Leutenegger,³ S. Bernitt,^{1,11,10,12} and J. R. Crespo López-Urrutia^{1,1} #### arXiv: 2003.13838 High-Precision Determination of Oxygen-K α Transition Energy Excludes Incongruent Motion of Interstellar Oxygen #### What else we have measured with EBITs and Synchrotrons? - Photoionization studies from N³⁺ to Fe²³⁺ - Fe^{15+...17+} resonance transitions - Ly-series lines of H-like N, O, and F ions - Fe K α in Fe^{17+...24+} ions excited at 6.7 keV - Polarization-dependent X-ray fluorescence - Oscillator strengths, line widths, and branching ratios S. Bernitt et al., Nature **492**, 225 (2012) J. Rudolph et al., PRL **111**, 103002 (2013) ## Two-Electron One-Photon Transitions in Li-like O5+ ## Systematic Fe-L laboratory experiments #### Checking of individual atomic components of 3s and 3d - Electron impact direct excitation - Dielectronic recombination satellites - Resonant excitation - Radiative cascades - 0 C #### Electron impact excitation cross sections #### ECS hitomi-like microcalorimeter spectrum Theory overpredicts 3C cross sections by 20-30% ... 3D seems to be okay! #### **Electron-impact excitation cross section** ## Optically thin cross sections – crucial for models **Dielectronic Recombination + Resonance Excitation cross sections** #### Dielectronic Recombination and Resonance Exc. #### 3d(3C + 3D + 3E) 3d DW theory overpredicts high-n DR, RE, CE cross sections by roughly ~20% ... C. Shah et al., ApJ (2019) #### **Resonance Excitation and Cascades** ## 3s (3G + 3F + M2) DW theory looks fine ... The 3s emission is fully dominated by Resonance Excitation and Cascades C. Shah et al., ApJ (2019) # 3s / 3d line ratio #### Still disagree w/ theory (3C can be a culprit behind) C. Shah et al., ApJ (2019) ## Systematic laboratory experiments #### Checking of individual atomic components of 3s and 3d - Electron impact direct excitation - Dielectronic recombination satellites - Resonant excitation - Radiative cascades Checking the most fundamental quantity of any electronic transition Oscillator strengths (or Einstein Coefficients A)