# Laboratory X-ray studies with trapped ions using EBITs and synchrotrons



#### **Chintan Shah**

NASA Goddard Space Flight Center &

Max Planck Institute for Nuclear Physics, Heidelberg





AtomDB workshop Monday, August 3<sup>rd</sup> 2020



# Fe<sup>16+</sup> (Fe XVII) line emission problem

Fe<sup>16+</sup> ions emit strongest soft X-ray diagnostic lines seen in space



Fe XVII 2p - 3d ~15 Å 3C (resonance line)and 3D (intercombination line)

Fe XVII 2p - 3s ~17 Å 3F + 3G and M2 (forbidden line)

#### Very Crucial for

- plasma temperature
- density
- turbulence velocity
- plasma opacity diagnostics...

Image: Chandra Space Telescope, NASA/CXC/NGST

Spectrum: E. Behar et al., ApJ (2001)

Disagreements between Observations and Models and between Experiments and Theoretical calculations.

3C/3D ratio have defied atomic and plasma theory for nearly 40 years



Is theory/Model wrong? Which part?

# **Classical Spectroscopy using EBITs**

Electron beam drives ionization, excitation, recombination, and traps the ions



Laser Spectroscopy using EBITs



collector





#### Key advantage:

purely photonic excitation suppresses uncertainties arising from collisional excitation



# LCLS Stanford campaign

(World's first and most powerful FEL Free Electron Laser)



#### **LCLS undulator hall**





# FLASH-EBIT at soft X-ray beamline (LCLS)



# Measurement Technique

EBIT: production and trapping of highly charged ions

X-ray laser: photo-excited trapped highly charged ions



# Experiment solves (serious) old problem



#### **Conclusion:**

Inaccurately predicted oscillator strengths for 3C and 3D are the root cause of the long-standing discrepancy between models and astrophysical observation and laboratory measurements

# Experiment solves (serious) old problem (May be?)

PRL 113, 143001 (2014)

PHYSICAL REVIEW LETTERS

week ending 3 OCTOBER 2014



#### Astrophysical Line Diagnosis Requires Nonlinear Dynamical Atomic Modeling

Natalia S. Oreshkina, Stefano M. Cavaletto, Christoph H. Keitel, and Zoltán Harman Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Received 3 July 2014; revised manuscript received 19 August 2014; published 29 September 2014)

THE ASTROPHYSICAL JOURNAL LETTERS, 801:L13 (5pp), 2015 March 1 © 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/2041-8205/801/1/L13

NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA

S. D. LOCH<sup>1</sup>, C. P. BALLANCE<sup>1</sup>, Y. LI<sup>1</sup>, M. FOGLE<sup>1</sup>, AND C. J. FONTES<sup>2</sup>

Aubum University, Aubum, AL 36849, USA; loch@physics.auburn.edu

Los Alamos National Laboratory, MS F663, Los Alamos, NM 87545, USA

Received 2014 July 23; accepted 2015 February 9; published 2015 March 2





Non-equilibrium modeling of the Fe XVII 3C/3D ratio for an intense X-ray free electron laser<sup>1</sup>

Y. Li, M. Fogle, S.D. Loch, C.P. Ballance, and C.J. Fontes



#### **Reason 1: Non-linear Dynamics?**

Femtosecond X-ray laser with intensities above ~10<sup>12</sup> W/cm<sup>2</sup>,

then upper state population of (3C and 3D) states cannot reach equilibrium...

# Reason 2: Population transfer?

between Fe15+ and Fe16+ due to strong autoionization channel, feeding the Fe15+ Cline blended with 3D



# PETRA III Synchrotron at DESY, Hamburg





#### Improvement in Resolution: 10x better than Chandra



## Measurement technique





# Final result vs. Exp. vs. Obs. vs. Models and Theories



## Results on the Fe XVII problem

- ✓ This new experiment reinstate the 40-year problem with 5 sigma discrepancy and 3 % uncertainty
- ✓ Low oscillator strengths are still a root cause of this problem (as our previous experiment found).



PHYSICAL REVIEW LETTERS 124, 225001 (2020)

**Editors' Suggestion** 

Featured in Physics

arXiv:1911.09707

#### High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem

Steffen Kühn®, <sup>1,2,\*</sup> Chintan Shah®, <sup>3,1,†</sup> José R. Crespo López-Urrutia®, <sup>1</sup> Keisuke Fujii®, <sup>4</sup> René Steinbrügge®, <sup>5</sup> Jakob Stierhof®, <sup>6</sup> Moto Togawa, <sup>1</sup> Zoltán Harman, <sup>1</sup> Natalia S. Oreshkina®, <sup>1</sup> Charles Cheung®, <sup>7</sup> Mikhail G. Kozlov®, <sup>8,9</sup> Sergey G. Porsev®, <sup>8,7</sup> Marianna S. Safronova, <sup>7,10</sup> Julian C. Berengut®, <sup>11,1</sup> Michael Rosner®, <sup>1</sup> Matthias Bissinger®, <sup>12,6</sup> Ralf Ballhausen, <sup>6</sup> Natalie Hell®, <sup>13</sup> SungNam Park®, <sup>14</sup> Moses Chung®, <sup>14</sup> Moritz Hoesch®, <sup>5</sup> Jörn Seltmann, <sup>5</sup> Andrey S. Surzhykov®, <sup>15,16</sup> Vladimir A. Yerokhin®, <sup>17</sup> Jörn Wilms®, <sup>6</sup> F. Scott Porter®, <sup>3</sup> Thomas Stöhlker®, <sup>18,19,20</sup> Christoph H. Keitel®, <sup>1</sup> Thomas Pfeifer, <sup>1</sup> Gregory V. Brown®, <sup>13</sup> Maurice A. Leutenegger, <sup>3</sup> and Sven Bernitt®, <sup>1,18,19,20</sup>

## What's next for the Fe XVII problem?

Investigate individual oscillator strengths of 3C and 3D rather than their ratio.



Oct 2019 beamtime:

We improved resolution: ~18 000 Resolving power at line 3C

The instrumental profile (beamline) is still a problem at very high resolution... ~ 30 000 RP at O-w line

We plan to investigate this problem in the upcoming beamtime in November 2020 at PETRA III Po4.

# Issue with the atomic oxygen O I velocity in the interstellar medium

Chandra observations of atomic O I 2p-1s absorption in ISM – backlit by bright X-ray binaries

PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE *CHANDRA* GRATING SPECTRA OF XTE J1817-330

E. Gatuzz<sup>1</sup>, J. García<sup>2,3</sup>, C. Mendoza<sup>1,4</sup>, T. R. Kallman<sup>3</sup>, M. Witthoeft<sup>3</sup>, A. Lohfink<sup>2</sup>, M. A. Bautista<sup>5</sup>, P. Palmeri<sup>6</sup>, and P. Quinet<sup>6,7</sup>

Published 2013 April 15 • © 2013. The American Astronomical Society. All rights reserved.



O I (2p-1s):  $\frac{23.502}{0.001}$  A

# A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR ATOMIC OXYGEN

T. W. Gorczyca<sup>1</sup>, M. A. Bautista<sup>1</sup>, M. F. Hasoglu<sup>2</sup>, J. García<sup>3</sup>, E. Gatuzz<sup>4</sup>, J. S. Kaastra<sup>5,6</sup>, T. R. Kallman<sup>7</sup>, S. T. Manson<sup>8</sup>, C. Mendoza<sup>1,4</sup>, A. J. J. Raassen<sup>5,9</sup> + Show full author list Published 2013 November 26 • © 2013. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 779, Number 1

| Data Set                          | $1s \rightarrow 2p$ |
|-----------------------------------|---------------------|
| Astronomical observations         |                     |
| Chandra, average of seven sources | $527.44 \pm 0.09$   |
| XMM-Newton, Mrk 421               | $527.30 \pm 0.05$   |
| Juett et al. (2004), six sources  | $527.41 \pm 0.18$   |
| Average                           | 527.37              |
| Chandra, Liao et al. (2013)       | $527.39 \pm 0.02$   |

O I (2p-1s): Chandra ~527.4 eV XMM-Newton ~527.3 eV

#### High-resolution lab measurements at ALS (O 1 15 → 2p)

# HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY

B. M. McLaughlin<sup>1,2</sup>, C. P. Ballance<sup>3</sup>, K. P. Bowen<sup>4</sup>, D. J. Gardenghi<sup>4</sup>, and W. C. Stolte<sup>4,5,6</sup> Published 2013 June 14 • © 2013. The American Astronomical Society. All rights reserved.

The Astrophysical Journal Letters, Volume 771, Number 1



Laboratory rest energy O I  $\sim 526.79 \pm 0.04 \text{ eV}$ 

Difference to line-of-sight average observed value from XMM and Chandra is ~ 500 - 600 meV

If we treat this discrepancy as a real astrophysical Doppler shift,

This would lead to a conclusion that the atomic oxygen along many line of sight is moving away from us at velocity of  $\sim$  300 - 350 km/s

#### High-resolution lab measurements at ALS (O 1 15 → 2p)



## Experimental setup at BESSY Synchrotron in Berlin











Leutenegger et al., arXiv:2003.13838

## Photo-excitation in He- and Li-like Oxygen



#### TEOP transitions are crucial for the plasma modeling



- ✓ TEOP processes dominate over allowed Auger and Radiative decay channels.
- ✓ TEOP contributions were only explained with the inclusion of the large set of configurations in our calculations.
- ✓ Blending with O VII resonance line may affect the resonance-to-forbidden line ratio.



#### arXiv:1911.09707

PHYSICAL REVIEW LETTERS 124, 225001 (2020)

Editors' Suggestion

Continued in Physics

High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem

Steffen Kühn, 1.2.\* Chintan Shaho, 3.1.† José R. Crespo López-Urrutia, 1 Keisuke Fujiio, 4 René Steinbrüggeo, 5
Jakob Stierhofo, 6 Moto Togawa, 1 Zoltán Harman, 1 Natalia S. Oreshkinao, 1 Charles Cheungo, 7 Mikhail G. Kozlovo, 89
Sergey G. Porsevo, 87 Marianna S. Safronova, 7.10
Julian C. Berenguto, 1.11
Michael Rosonero, 1 Matthias Bissingero, 126
Ralf Ballhausen, 6 Natalie Hello, 13 SungNam Parko, 14 Moses Chungo, 14 Moritz Hoescho, 5 Jörn Seltmann, 5 Andrey
S. Surzhykovo, 15.16
Vladimir A. Yerokhino, 17 Jörn Wilmso, 6 F. Scott Portero, 3 Thomas Stöhlkero, 18.19,20
Christoph H. Keitelo, 1 Thomas Pfeifer, 1 Gregory V. Browno, 13 Maurice A. Leutenegger, 3 and Sven Bernitto, 1.18,19,20

#### arXiv: 2003.05965

Two-Electron-One-Photon Processes Can Dominate over Allowed Intershell Radiative and Auger Decay in Few-Electron Ions

M. Togawa,<sup>1,\*</sup> S. Kühn,<sup>1,2</sup> C. Shah,<sup>1,3</sup> P. Amaro,<sup>4</sup> R. Steinbrügge,<sup>5</sup> J. Stierhof,<sup>6</sup> N. Hell,<sup>7</sup> M. Rosner,<sup>1,2</sup> K. Fujii,<sup>8</sup> M. Bissinger,<sup>6</sup> R. Ballhausen,<sup>6</sup> M. Hoesch,<sup>5</sup> J. Seltmann,<sup>5</sup> S. Park,<sup>9</sup> F. Grilo,<sup>4</sup> F. S. Porter,<sup>3</sup> J. P. Santos,<sup>4</sup> M. Chung,<sup>9</sup> T. Stöhlker,<sup>10,11,12</sup> J. Wilms,<sup>6</sup> T. Pfeifer,<sup>1</sup> G. V. Brown,<sup>7</sup> M. A. Leutenegger,<sup>3</sup> S. Bernitt,<sup>1,11,10,12</sup> and J. R. Crespo López-Urrutia<sup>1,1</sup>

#### arXiv: 2003.13838

High-Precision Determination of Oxygen-K $\alpha$  Transition Energy Excludes Incongruent Motion of Interstellar Oxygen



#### What else we have measured with EBITs and Synchrotrons?

- Photoionization studies from N<sup>3+</sup> to Fe<sup>23+</sup>
- Fe<sup>15+...17+</sup> resonance transitions
- Ly-series lines of H-like N, O, and F ions
- Fe K $\alpha$  in Fe<sup>17+...24+</sup> ions excited at 6.7 keV
- Polarization-dependent X-ray fluorescence
- Oscillator strengths, line widths, and branching ratios







S. Bernitt et al., Nature **492**, 225 (2012)





J. Rudolph et al., PRL **111**, 103002 (2013)

## Two-Electron One-Photon Transitions in Li-like O5+







## Systematic Fe-L laboratory experiments

#### Checking of individual atomic components of 3s and 3d

- Electron impact direct excitation
- Dielectronic recombination satellites
- Resonant excitation
- Radiative cascades
- 0 ....

 $\mathsf{C}$ 

#### Electron impact excitation cross sections

#### ECS hitomi-like microcalorimeter spectrum



Theory overpredicts 3C cross sections by 20-30% ...

3D seems to be okay!

#### **Electron-impact excitation cross section**



## Optically thin cross sections – crucial for models

**Dielectronic Recombination + Resonance Excitation cross sections** 



#### Dielectronic Recombination and Resonance Exc.

#### 3d(3C + 3D + 3E)



3d DW theory overpredicts high-n DR, RE, CE cross sections by roughly ~20% ...

C. Shah et al., ApJ (2019)

#### **Resonance Excitation and Cascades**

## 3s (3G + 3F + M2) DW theory looks fine ...

The 3s emission is fully dominated by Resonance Excitation and Cascades



C. Shah et al., ApJ (2019)

# 3s / 3d line ratio

#### Still disagree w/ theory (3C can be a culprit behind)



C. Shah et al., ApJ (2019)

## Systematic laboratory experiments

#### Checking of individual atomic components of 3s and 3d

- Electron impact direct excitation
- Dielectronic recombination satellites
- Resonant excitation
- Radiative cascades

Checking the most fundamental quantity of any electronic transition

Oscillator strengths (or Einstein Coefficients A)