Poisson Statistics in High-Energy Astrophysics

Andy Pollock
European Space Agency
ex-XMM-Newton RGS Calibration Scientist

AtomDB Workshop 2014 September 6-9
Tokyo Metropolitan University
Make every photon count.
Understand every photon and every bin.
data ⇔ models

\{n_i\}_{i=1,N} ⇔ \{\mu_i\}_{i=1,N}

≥ 0 individual events ⇔ continuously distributed

detector coordinates ⇔ physical parameters

never change ⇔ change limited only by physics

have no errors ⇔ subject to fluctuations

most precious resource ⇔ predictions possible

kept forever in archives ⇔ kept forever in journals and textbooks

statistics
Analysis in high-energy astrophysics

data ⇔ models

\[n_i(x,y,t,\Pi) ⇔ \mu_i(x,y,t,\Pi \mid \alpha, \delta, kT, L_X, N_X, \ldots) \]
Measurements in high-energy astrophysics collect individual events.
Many different things could have happened to give those events.
Alternatives are governed by the laws of probability.
Direct inversion impossible.
Information derived about the universe is not certain.
Statistical inference quantifies the uncertainties.
- What do we know?
- How well do we know it?
- Can we avoid mistakes?
- What should we do next?
2 approaches to statistical inference

• Classical or frequentist statistical inference
 • infinite series of identical measurements
 • hypothesis testing and rejection
 • the usual interpretation

• Bayesian statistical inference
 • prior and posterior probabilities
 • currently popular in science

• Neither especially relevant for astrophysics
 • one universe
 • irrelevance of prior probabilities and cost analysis
 • choice among many models driven by physics
2 types of statistic

Poisson statistics

Gaussian statistics
2½ types of statistic

• C-statistic ↔ Poisson statistics

• χ^2-statistic ↔ Gaussian statistics
The Poisson probability distribution for data={\(n \geq 0\)} and model={\(\mu > 0\)}

\[
P(n \mid \mu) = \frac{e^{-\mu} \mu^n}{n!}
\]

\[
\sum_{n=0}^{\infty} P(n \mid \mu) = 1
\]

\[
\ln P = n \ln \mu - \mu - \ln n!
\]

\[
\forall n = 0, 1, 2, 3, \ldots, \infty
\]

\[
P(0 \mid \mu) = e^{-\mu}
\]

\[
P(1 \mid \mu) = e^{-\mu} \frac{\mu}{1}
\]

\[
P(2 \mid \mu) = e^{-\mu} \frac{\mu \mu}{1 \ 2}
\]

\[
P(3 \mid \mu) = e^{-\mu} \frac{\mu \mu \mu}{1 \ 2 \ 3}
\]

\[
P(n \mid \mu) = P(n-1 \mid \mu) \frac{\mu}{n}
\]
The Normal probability distribution $P(x|\mu, \sigma)$ for data=$\{x \in \mathbb{R}\}$ and model=$\{\mu, \sigma\}$

$$P(x | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

$$\int_{-\infty}^{+\infty} P(x | \mu, \sigma) dx = 1$$

$$\ln P = -\frac{(x - \mu)^2}{2\sigma^2} - \ln(\sigma \sqrt{2\pi})$$

1σ 68.3%
2σ 95.45%
3σ 99.730%
4σ 99.99367%
5σ 99.999943%
The Normal probability distribution $P(x|\mu, \sigma)$ for data=$\{x \in \mathbb{R}\}$ and model=$\{\mu, \sigma\}$

$$P(x | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

$$\int_{-\infty}^{+\infty} P(x | \mu, \sigma) dx = 1$$

$$\ln P = -\frac{(x - \mu)^2}{2\sigma^2} - \ln(\sigma \sqrt{2\pi})$$

European Space Agency
Likelihood of data given models

\(\{n_i\}_{i=1,N} \) data \[\mapsto \] statistics \[\mapsto \] models \(\{\mu_i\}_{i=1,N} \)

\[
L = \prod_{i=1}^{N} P(n_i \mid \mu_i)
\]

Poisson

\[
L = \prod_{i=1}^{N} \frac{e^{-\mu_i} \mu_i^{n_i}}{n_i!}
\]

\[
\ln L = \sum_{i=1}^{N} n_i \ln \mu_i - \mu_i - \kappa(\ln n_i!)
\]

\[-2 \ln L = C\]

Gaussian

\[
L = \prod_{i=1}^{N} \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left(-\frac{(n_i - \mu_i)^2}{2\sigma_i^2} \right) dn_i
\]

\[
\ln L = -\frac{1}{2} \sum_{i=1}^{N} \frac{(n_i - \mu_i)^2}{\sigma_i^2} - \sum_{i=1}^{N} \ln \sigma_i + \kappa(\ln dn_i)
\]

\[
\sigma_i = \sigma_i(n_i, \mu_i)
\]

\[-2 \ln L = \chi^2\]

\[
\ln L = \sum_{events} \ln \mu - \sum_{bins} \mu
\]
Numerical model of the life of a photon

Detected data are governed by the laws of physics. The numerical model should reproduce as completely as possible every process that gives rise to events in the detector:

• photon production in the source (or sources) of interest
• intervening absorption
• effects of the instrument
 • calibration
• background components
 • cosmic X-ray background
 • local energetic particles
 • instrumental noise
• model it
 • do not subtract it
An *XMM-Newton* RGS instrument

\[\cos \beta = \cos \alpha + m \lambda/d \]
5-10% accuracy is a common calibration goal
The final data model

\[\mu(\theta, \beta, \Delta, D) = S(\theta(\Omega)) \otimes R(\Omega <\Delta>D) + B(\beta(D)) \]

- \(D\) = set of detector coordinates \(\{X,Y,t,PI,...\}\)
- \(S\) = source of interest
- \(\theta\) = set of source parameters
- \(R\) = instrumental response
- \(\Omega\) = set of physical coordinates \(\{\alpha,\delta,\tau,\nu,...\}\)
- \(\Delta\) = set of instrumental calibration parameters
- \(B\) = background
- \(\beta\) = set of background parameters

\[\Rightarrow \ln L(\theta, \beta, \Delta) \Rightarrow \ln L(\theta) \]
Uses of the log-likelihood, $\ln L(\theta)$

- $\ln L$ is what you need to assess all and any data models
 - locate the maximum-likelihood model when $\theta = \theta^*$
 - minimum χ^2 is a maximum-likelihood Gaussian statistic
 - minimum C is a maximum-likelihood Poisson statistic
 - compute a goodness-of-fit statistic
 - reduced chi-squared $\chi^2/\nu \sim 1$ ideally
 - reduced C $C/\nu \sim 1$ ideally
 - $\nu = \text{number of degrees of freedom}$
 - estimate model parameters and uncertainties
 - $\ln L(\theta)$
 - $\theta^* = \{p_1, p_2, p_3, p_4, \ldots, p_M\}$
 - investigate the whole multi-dimensional surface $\ln L(\theta)$
 - compare two or more models

- calibrating $\ln L$, $2\Delta \ln L \Leftrightarrow \sigma \sqrt{2\Delta \ln L}$
 - $2\Delta \ln L < 1.$ is not interesting
 - $2\Delta \ln L > 10.$ is worth thinking about (e.g. 2XMM DET_ML $\geq 8.$)
 - $2\Delta \ln L > 100.$ Hmmm...
Example of a maximum-likelihood solution

N-pixel image : data \(\{n_i\} \) photons : model \(\{\mu_i=sp_i+b\} \) : PSF \(p_i \) : unknown \(\{s,b\} \)

\[
\ln L = \sum_{i=1}^{N} n_i \ln \mu_i - \mu_i \\
= \sum_{i=1}^{N} n_i \ln(sp_i + b) - (sp_i + b)
\]

\[
\frac{\partial \ln L}{\partial s} = \sum_{i=1}^{N} \frac{n_i p_i}{sp_i + b} - p_i = 0
\]

\[
\frac{\partial \ln L}{\partial b} = \sum_{i=1}^{N} \frac{n_i}{sp_i + b} - 1 = 0
\]

\[
s \frac{\partial \ln L}{\partial s} + b \frac{\partial \ln L}{\partial b} = \sum_{i=1}^{N} \frac{n_i sp_i}{sp_i + b} - sp_i + \sum_{i=1}^{N} \frac{n_i b}{sp_i + b} - b = 0
\]

\[
\sum_{i=1}^{N} n_i = s \sum_{i=1}^{N} p_i + b \sum_{i=1}^{N} 1
\]
General-purpose background method

\[n_T \Rightarrow m_T = m_S + f_B \times m_B \]
\[n_B \Rightarrow m_B \]

\[f_B \times \left(\frac{n_T}{m_T} - 1 \right) + \left(\frac{n_B}{m_B} - 1 \right) = 0 \]

\[\ln L = [n_T \times \ln(s+fb) - (s+fb)] + [n_B \times \ln(b) - b] \]

![Graph showing log-likelihood vs. model background count]
Bias in data analysis

Maximum-likelihood estimates, μ, of the mean counts for observations \{n\}

- χ^2 data weights $\Sigma (n-\mu)^2/n$ $\Rightarrow \mu^{-1} = <n^{-1}>$
- C-statistic $\Sigma n/n\mu - \mu$ $\Rightarrow \mu = <n>$ (the correct answer)
- χ^2 model weights $\Sigma (n-\mu)^2/\mu$ $\Rightarrow \mu^2 = <n^2>$

Biases for Poisson distribution with $\mu = 100$

- $1/<n^{-1}> = 98.9897$
- $<n> = 100$
- $\sqrt{<n^2>} = 100.4988$

- Bias is binning dependent
- Unbias is binning independent
Bias in data analysis

Maximum-likelihood estimates, μ, of the mean counts for observations \{n\}

- χ^2 data weights $\sum (n-\mu)^2/n \Rightarrow \mu^{-1} = <n^{-1}>$
- C-statistic $\sum n/n\mu - \mu \Rightarrow \mu = <n>$ (the correct answer)
- χ^2 model weights+ $\sum (n-\mu)^2/\mu + ln\mu \Rightarrow \mu = <n>$ (the correct answer)

Biases for Poisson distribution with $\mu = 100$

- $1/<n^{-1}> = 98.9897$
- $<n> = 100$
- $\sqrt{<n^2>} = 100.4988$

- **Bias is binning dependent**
- **Unbias is binning independent**
If the likelihood is not appropriate, you may not get the best fit.
Choice of statistical method makes a difference.

<table>
<thead>
<tr>
<th>XSPEC statistic</th>
<th>RGS1</th>
<th>RGS2</th>
<th>RGS1</th>
<th>RGS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2(data)</td>
<td>-2.8%</td>
<td>-2.7%</td>
<td>+0.1%</td>
<td>+0.2%</td>
</tr>
<tr>
<td>C</td>
<td>-0.4%</td>
<td>-0.2%</td>
<td>+3.9%</td>
<td>+3.3%</td>
</tr>
<tr>
<td>χ^2(model)</td>
<td>+1.2%</td>
<td>+1.5%</td>
<td>+5.0%</td>
<td>+5.6%</td>
</tr>
<tr>
<td>λ</td>
<td>short</td>
<td>short</td>
<td>long</td>
<td>long</td>
</tr>
</tbody>
</table>
Goodness-of-fit is a separate issue

\[\chi^2 \text{ data } S_i = (n_i - \mu_i)^2/n_i ; \quad \text{C-statistic } C_i = n_i/n \mu_i - \mu_i ; \quad \chi^2 \text{ model } Q_i = (n_i - \mu_i)^2/\mu_i \]

\[\langle Q \rangle = \langle (n - \mu)^2/\mu \rangle = \langle n^2/\mu \rangle - 2\langle n \rangle + \mu \langle 1 \rangle = 1 \]
To rebin or not to rebin?
To rebin or not to rebin a spectrum?

Pros
- Gaussian \equiv Poisson for $n \gg 0$
- dangers of oversampling
- saves time
- everybody does it
- “improves the statistics”
- grapha and other tools exist
- on log-log plots $\ln 0 = -\infty$

Cons
- rebinning throws away information
- 0 is a perfectly good measurement (cf 4’33”)
- images are never rebinned
- Poisson statistics robust for $n \geq 0$
- $\mu_1 + \mu_2$ is also a Poisson variable
- oversampling harmless
- adding bins does not “improve the statistics”

Leave spectra alone! Don’t rebin. Use Poisson statistics.
1. Don’t rebin
2. n=0 is a perfectly good measurement
3. Don’t subtract from the data, add to the model
4. Use the C-statistic to explore parameter space
5. Report unreduced C-statistic, NBINS & NDOF (and NFREE/NPAR)
6. Report maximum-likelihood parameter estimates and ΔC=1 errors
7. **Use the goodness-of-fit Q-statistic**
8. \(\mu=0.\pm \sigma \) is a perfectly good parameter estimate
9. Beware of systematic errors
10. Beware of log-log plots
11. Beware of pile-up and PI redistribution
Two commandments of data analysis

① Use the C-statistic to explore parameter space
② Use the Q-statistic for goodness-of-fit
Comparison of models

- Questions of the type
 - Is it statistically justified to add another line to my model?
 - Which model is better for my data?
 - a disk black body with 7 free parameters
 - a non-thermal synchrotron with 2 free parameters
- More parameters generally make it easier to improve the goodness-of-fit
- Comparing two models must take ν into account
 - $\{\mu_i^1\}$ and $\{\mu_i^2\}$
 - the model with the higher log-likelihood is better
 - compute $2\Delta\ln L$
 - $\Delta\chi^2 > 1,10,100,1000,…$ (F-test) per extra ν
 - $\Delta C > 1,10,100,1000,…$ (Wilks’s theorem) per extra ν
 - use of probability tables could be required by a referee
Practical considerations

• S/ν is rarely ~ 1
 • $S = \chi^2|C$
 • $\ln L(\theta, \beta, \Delta)$
 • θ = set of source spectrum parameters
 • physics might need improvement
 • β = set of background parameters
 • background models can be difficult
 • Δ = set of instrumental calibration parameters
 • 5 or 10% accuracy is a common calibration goal
• solution often dominated by systematic errors
 • XSPEC’s SYS_ERR is the wrong way to do it
 • no-one knows the right way (although let’s look at PyBlocks)
• formal probabilities are not to be taken too seriously
 • $S/\nu > 2$ is bad
 • $S/\nu \sim 1$ is good
 • $S/\nu \sim 0$ is also bad
• find out where the model isn’t working
 • pay attention to every bin
Exploration of the likelihood surface $\ln L(\theta)$

- Frequentists and Bayesians agree that the shape of the entire surface is important
 - find the global maximum likelihood for $\theta = \theta^*$
 - identify and understand any local likelihood maxima
 - calculate 1σ intervals to summarise the shape of the surface (time-consuming)
 - investigate interdependence of source parameters
 - make lots of plots
 - why log-log plots?
 - Verbunt’s proposed abolition of the magnitude scale
 - pay attention to the whole model
- XSPEC has some relevant methods
 - XSPEC> fit ! to find the maximum-likelihood solution
 - XSPEC> plot data ratio ! Is the model good everywhere?
 - XSPEC> steppar [one or two parameters] ! go for lunch
 - XSPEC> error 1. [one or more parameters] ! go home
High-resolution X-ray spectrum of ζ Ori

Event count

XMM RGS
Chandra MEG
Error propagation with XSPEC local models

- He-like triplet line fluxes
 - r=resonance, i=intercombination, f=forbidden
- Ratios of physical diagnostic significance
 - $R=f/i$
 - $G=(i+f)/r$
- $r=$norm
 - $i/r=G/(1+R)$
 - $f/r=GR/(1+R)$

XSPEC> error 1. G R

```
SUBROUTINE trifir(ear, ne, param, ifl, photar, photer)
    INTEGER ne, ifl
    REAL ear(0:ne), param(8), photar(ne), photer(ne)
    C---
    C XSPEC model subroutine
    C He-like triplet skewed triangular line profiles
    C---
    C see ADDMOD for parameter descriptions
    C number of model parameters:8
    C 1 WR resonance line laboratory wavelength (Angstroms) : fixed
    C 2 WI intercombination line laboratory wavelength (Angstroms) : fixed
    C 3 WF forbidden line laboratory wavelength (Angstroms) : fixed
    C 4 BV triplet velocity zero-intensity on the blue side (km/s)
    C 5 DV triplet velocity shift from laboratory value (km/s)
    C 6 RV triplet velocity zero-intensity on the red side (km/s)
    C 7 R f/i intensity ratio
    C 8 G (i+f)/r intensity ratio
```

European Space Agency
Some general **XSPEC** advice

• Save early and save often
 - XSPEC> save all $filename1
 - XSPEC> save model $filename2

• Beware of local minima
 - XSPEC> query yes
 - XSPEC> error 1. $parameterIndex ! go home

• Investigate \(\ln L(\theta) \) with liberal use of the commands
 - XSPEC> steppar [one or two parameters] ! go for lunch
 - XSPEC> plot contour

• Use separate TOTAL and BACKGROUND spectra

• Change XSPEC defaults if necessary
 - Xspec.init

• Ctrl^C

• Tcl scripting language

• Your own local models are often useful

• Make lots of plots
 - XSPEC> setplot rebin ...
Example XSPEC steppar results

Warning: this took several days - and it's probably wrong.
XSPEC’s statistical commands

- XSPEC12> goodness ! simulation
- XSPEC12> bayes ! Bayesian inference
- XSPEC12> chain ! Bayesian MCMC methods
A thwarted RGS objective

XSPEC12>showXspecSpectra
1 WR133_1713_0556260301_EPN_S003.pha
2 WR133_1713_0556260301_EMOS1_S001.pha
3 WR133_1713_0556260301_EMOS2_S002.pha
4 WR133_1713_0556260301_RGS1_S004_o1.pha
5 WR133_1713_0556260301_RGS2_S005_o1.pha
6 WR133_1713_0556260301_RGS1_S004_o2.pha
7 WR133_1713_0556260301_RGS2_S005_o2.pha
XSPEC12>setplot group 2-3
XSPEC12>setplot group 4-5
***Warning: Spectra 4-5 do not contain the same energy bins and/or channels.
 They will not be grouped.
XSPEC12>

Notation

T TOTAL
B BACKGROUND
S SOURCE

Poisson statistics \(P(n|\mu) = e^{-\mu} \times \mu^n/n! \)
XSPEC> data ... ⇒ nT
XSPEC> back ... ⇒ nB
XSPEC> tclout backscal ... ⇒ fB
XSPEC> model ...
XSPEC> statistic cstat
XSPEC> fit
XSPEC> tclout plot counts model ... ⇒ mS
XSPEC model stack statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Component</th>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBabs1</td>
<td>powerlaw2</td>
<td>nh</td>
<td>10^{12}</td>
<td>$1.86352E-02$ $+$ $-1.47632E-03$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhaIndex</td>
<td></td>
<td>2.23155 $+$ $-1.53285E-02$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>norm</td>
<td></td>
<td>$1.62377E-02$ $+$ $-1.05617E-04$</td>
<td></td>
</tr>
</tbody>
</table>

Data group: 1

1	1	TBabs	nh	10^{12}	$1.86352E-02$ $+$ $-1.47632E-03$	1
2	2	powerlaw	PhaIndex		2.23155 $+$ $-1.53285E-02$	2
3	2	powerlaw	norm		$1.62377E-02$ $+$ $-1.05617E-04$	

Data group: 2

4	1	TBabs	nh	10^{12}	$1.86352E-02$ $+$ $-1.47632E-03$	1
5	2	powerlaw	PhaIndex		2.23155 $+$ $-1.53285E-02$	2
6	2	powerlaw	norm		$1.56203E-02$ $+$ $-9.68734E-05$	

C-statistic = 6440.38 using 5323 PHA bins and 5319 degrees of freedom.

```
XSPEC12> showXspecPoissonFitStatistics
```

<table>
<thead>
<tr>
<th>NBINS</th>
<th>data model</th>
<th>lnF</th>
<th>lnC</th>
<th>NZero</th>
<th>MZero</th>
</tr>
</thead>
<tbody>
<tr>
<td>counts</td>
<td>counts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2718</td>
<td>67895</td>
<td>3360.1</td>
<td>3360.1</td>
<td>24</td>
<td>92.0</td>
</tr>
<tr>
<td>2605</td>
<td>72216</td>
<td>3080.3</td>
<td>3080.3</td>
<td>18</td>
<td>42.2</td>
</tr>
</tbody>
</table>

| 5323 | 140111 | 140080 | 6440.4 | 6440.4 | 42 | 134.2 | Total |
XSPEC> fit
XSPEC> exportXspecModelDetails XMD.fits

CHANNEL
E_MIN (keV)
E_MAX (keV)
QUALITY
XSPECHAN
EXPOSURE (s)
AREA (cm²)
NOTICED
DATA aka nT
BKGDATA aka nB
BKGRATIO aka fB
MODEL aka mT
SRCHMODEL aka mS
BKGMODEL aka mB
DCSTAT = 2\[nT×ln(nT/mT)-(nT-mT)] + 2\[nB×ln(nB/mB)-(nB-mB)]
RGS1 AB Dor FeXVII line with an old LSF

XMM-Newton RGS1
RGS1_LINESPREADFUNC_0004.CCF

ABDor FeXVII(15.015) 1st order
34-stack C(49) = 141.31

Counts

Wavelength (Å)

14.8 14.9 15.0 15.1 15.2

1000 2000 3000 4000
RGS1 AB Dor FeXVII line with a new LSF

XMM-Newton RGS1
RGS1_LINESPREADFUNC_0005.CCF

ABDor FeXVII(15.015) 1st order
34-stack C(49) = 121.77

Counts

14.8 14.9 15.0 15.1 15.2

Wavelength(Å)
RGS systematic errors

RGS spectrum stack

XMM-Newton RGS1
PKS2155-304

Fractional Residual

Wavelength(Å)

Statistics for AtomDB | A.M.T. Pollock | Tokyo | 2014-09-06:09
RGS statistics: \(Q = \frac{(n-\mu)^2}{\mu} \)

\(<Q> = 1.69\)
Fluctuations between neighbouring pixels

\[Q = \frac{(n - \mu)^2}{\mu} \quad \Rightarrow \quad Q' = \frac{(n_1 - n_2)^2}{(n_1 + n_2)} \]
Comparing \(Q = \frac{(n - \mu)^2}{\mu} \) & \(Q' = \frac{(n_1 - n_2)^2}{(n_1 + n_2)} \).
General advice

• Cherish your data.
• Be aware of the strengths and limitations of each instrument.
• Don’t subtract from the data, add to the model.
• Make lots of plots.
• Pay attention to every part of the model.
• Think about parameter independence.
• 1σ errors always.
 • Same for upper limits.
• Make every decision a statistical decision.
• Make the best model possible.
 • If there are 100 sources and 6 different backgrounds in your data,
 • put 100 sources and 6 different backgrounds in your model.
Make every photon count.
Understand every photon and every bin.