Convergent Close-Coupling approach to atomic and molecular collisions

Igor Bray
Dmitry Fursa, Alisher Kadyrov, Andris Stelbovics
and many students

Head, Physics, Astronomy and Medical Imaging Science,
Curtin University, Perth, Western Australia

Tokyo Metropolitan University, September, 2014
Outline

1 Introduction
 - Motivation
 - Applications
 - Distant history
 - Recent history

2 Convergent Close-Coupling theory
 - Target structure
 - Scattering

3 Comparison with experiment
 - $e^-\cdot H$ ionisation
 - $e^-\cdot He$-like atom/ion ionisation
 - $e^+\cdot H_2$
 - Photoionisation

4 Concluding remarks
The primary motivation is to provide accurate atomic and molecular collision data for science and industry.

Collisions on the atomic scale are difficult to calculate:
- Governed by the Laws of Quantum Mechanics
- Charged particles interact at infinite distances
- Countably infinite discrete spectrum
- Uncountably infinite target continuum
- Can be multicentred (e.g. charge exchange)

Solved by the Convergent Close-Coupling (CCC) method.
The primary motivation is to provide accurate atomic and molecular collision data for science and industry. Collisions on the atomic scale are difficult to calculate:

- Governed by the Laws of Quantum Mechanics
- Charged particles interact at infinite distances
- Countably infinite discrete spectrum
- Uncountably infinite target continuum
- Can be multicentred (e.g. charge exchange)

Solved by the Convergent Close-Coupling (CCC) method.
The primary motivation is to provide accurate atomic and molecular collision data for science and industry.

Collisions on the atomic scale are difficult to calculate:
- Governed by the Laws of Quantum Mechanics
- Charged particles interact at infinite distances
- Countably infinite discrete spectrum
- Uncountably infinite target continuum
- Can be multicentred (e.g. charge exchange)

Solved by the Convergent Close-Coupling (CCC) method.
Applications

- Astrophysics
 - Fusion research
 - Neutral Antimatter creation
 - Lighting industry
 - Medical and materials applications
Applications

- Astrophysics
- Fusion research
 - Neutral
 - Antimatter creation
 - Lighting industry
 - Medical and materials applications
Applications

- Astrophysics
- Fusion research
- Neutral Antimatter creation
- Lighting industry
- Medical and materials applications
Applications

- Astrophysics
- Fusion research
- Neutral Antimatter creation
- Lighting industry
- Medical and materials applications
Applications

- Astrophysics
- Fusion research
- Neutral Antimatter creation
- Lighting industry
- Medical and materials applications
Prior to the 1990s theory and experiment generally did not agree for:
- electron-hydrogen excitation or ionisation,
- electron-helium excitation or ionisation,
- single or double photoionisation of helium.

The convergent close-coupling (CCC) theory for electron/positron/photon/(anti)proton collisions with atoms/ions/molecules
- based on a complete L^2 expansion of the total wavefunction in the Schrödinger or Dirac equation
- applicable at all energies for elastic, excitation, ionisation and charge exchange processes
Prior to the 1990s theory and experiment generally did not agree for:
- electron-hydrogen excitation or ionisation,
- electron-helium excitation or ionisation,
- single or double photoionisation of helium.

The convergent close-coupling (CCC) theory for electron/positron/photon/(anti)proton collisions with atoms/ions/molecules
- based on a complete L^2 expansion of the total wavefunction in the Schrödinger or Dirac equation
- applicable at all energies for elastic, excitation, ionisation and charge exchange processes

Igor Bray <I.Bray@curtin.edu.au>
CCC Approach to collisions

Curtin University
Prior to 2008, no satisfactory mathematical formulation in the case of long-range (Coulomb) potentials for positive-energy scattering in
- Two-body problems
- Three-body problems

Developed a surface integral approach to scattering theory that is valid for short- and long-range potentials
- Kadyrov et al., Annals of Physics 324, 1516 (2009)
- Bray et. al., Physics Reports 520, 135 (2012)
Recent history: formal theory

- Prior to 2008, no satisfactory mathematical formulation in the case of long-range (Coulomb) potentials for positive-energy scattering in
 - Two-body problems
 - Three-body problems
- Developed a surface integral approach to scattering theory that is valid for short- and long-range potentials
 - Kadyrov et al., Annals of Physics 324, 1516 (2009)
 - Bray et. al., Physics Reports 520, 135 (2012)
Extended the CCC method to
- fully relativistic formalism
- multi-centre problems such as positron or proton scattering
- heavy projectiles such as (anti)protons and bare nuclei
- molecular targets: H\textsubscript{2} and H\textsubscript{2}+ thus far. Working on Ne-like treatment of H\textsubscript{2}O.
Recent history: computational

Extended the CCC method to
- fully relativistic formalism
- multi-centre problems such as positron or proton scattering
- heavy projectiles such as (anti)protons and bare nuclei
- molecular targets: H$_2$ and H$_2^+$ thus far. Working on Ne-like treatment of H$_2$O.
Recent history: computational

Extended the CCC method to
- fully relativistic formalism
- multi-centre problems such as positron or proton scattering
- heavy projectiles such as (anti)protons and bare nuclei
- molecular targets: \(\text{H}_2 \) and \(\text{H}_2^+ \) thus far. Working on Ne-like treatment of \(\text{H}_2\text{O} \).
Recent history: computational

Extended the CCC method to
- fully relativistic formalism
- multi-centre problems such as positron or proton scattering
- heavy projectiles such as (anti)protons and bare nuclei
- molecular targets: H₂ and H₂⁺ thus far. Working on Ne-like treatment of H₂O.
Using the complete Laguerre basis $\xi_{nl}^{(\lambda)}(r)$ write:

- **“one-electron”** (H, Ps, He$^+$, Li, Na, H$_2^+$, . . .) states:
 $$\phi_{nl}^{(\lambda)}(r) = \sum_{n'} C_{nl}^{n'} \xi_{n'l}^{(\lambda)}(r)$$

- **“two-electron”** (He, N$^5+$, Be, Hg, H$_2$, . . .) states:
 $$\phi_{nls}^{(\lambda)}(r_1, r_2) = \sum_{n', n''} C_{nls}^{n'n''} \xi_{n'l'}^{(\lambda)}(r_1) \xi_{n''l''}^{(\lambda)}(r_2).$$

Coefficients C are obtained by diagonalising the target (FCHF) Hamiltonian

$$\langle \phi_f^{(\lambda)} | H_T | \phi_i^{(\lambda)} \rangle = \varepsilon_f^{(\lambda)} \delta_{fi}; \quad \lim_{N \to \infty} \sum_{n=1}^{N} |\phi_n^{(\lambda)}\rangle \langle \phi_n^{(\lambda)}| = I_T.$$
Convergent Close-Coupling theory

Target structure

Using the complete Laguerre basis $\xi_{nl}^{(\lambda)}(r)$ write:

- "one-electron" (H, Ps, He$,^+$, Li, Na, H$^+_2$, . . .) states:
 \[\phi_{nl}^{(\lambda)}(r) = \sum_{n'} C_{nl}^{n'} \xi_{n'l}^{(\lambda)}(r) \]

- "two-electron" (He, N5, Be, Hg, H$_2$, . . .) states:
 \[\phi_{nl's}^{(\lambda)}(r_1, r_2) = \sum_{n', n''} C_{nl's}^{n'n''} \xi_{n'l'}^{(\lambda)}(r_1) \xi_{n''l''}^{(\lambda)}(r_2). \]

Coefficients C are obtained by diagonalising the target (FCHF) Hamiltonian

\[\langle \phi_f^{(\lambda)} | H_T | \phi_i^{(\lambda)} \rangle = \varepsilon_f^{(\lambda)} \delta_{fi}; \]

\[\lim_{N \to \infty} \sum_{n=1}^{N} | \phi_n^{(\lambda)} \rangle \langle \phi_n^{(\lambda)} | = I_T. \]
Hydrogen $\ell = 0$ energies for $\lambda = 1$ Laguerre bases
Projectile-target wavefunction is expanded as

\[|\psi_i^{(+)}\rangle \approx I_T^{(N)}|\psi_i^{(+)}\rangle = \sum_{n=1}^{N} |\phi_n F_{ni}\rangle + \ldots \] \hspace{1cm} (1)

Solve for \(T_{fi} \equiv \langle k_f \phi_f | V | \psi_i^{(+)} \rangle \) at \(E = \varepsilon_i + \epsilon_k \),

\[\langle k_f \phi_f | T | \phi_i k_i \rangle = \langle k_f \phi_f | V | \phi_i k_i \rangle \]

\[+ \sum_{n=1}^{N} \int d^3k \frac{\langle k_f \phi_f | V | \phi_n k \rangle \langle k \phi_n | T | \phi_i k_i \rangle}{E + i0 - \varepsilon_n - \epsilon_k}. \] \hspace{1cm} (2)

Cross section: \(\sigma_{fi} \propto |\langle k_f \phi_f | T | \phi_i k_i \rangle|^2 \).
Convergent Close-Coupling theory

- Projectile-target wavefunction is expanded as

\[|\psi_i^{(+)}\rangle \approx I_T^{(N)} |\psi_i^{(+)}\rangle = \sum_{n=1}^{N} |\phi_n F_{ni}\rangle + \ldots \] \hspace{1cm} (1)

- Solve for \(T_{fi} \equiv \langle \mathbf{k}_f \phi_f | V | \psi_i^{(+)}\rangle \) at \(E = \varepsilon_i + \epsilon_{ki} \),

\[\langle \mathbf{k}_f \phi_f | T | \phi_i k_i \rangle = \langle \mathbf{k}_f \phi_f | V | \phi_i k_i \rangle \]

\[+ \sum_{n=1}^{N} \int d^3 k \frac{\langle \mathbf{k}_f \phi_f | V | \phi_n k \rangle \langle \mathbf{k} \phi_n | T | \phi_i k_i \rangle}{E + i0 - \varepsilon_n - \epsilon_k}. \] \hspace{1cm} (2)

- Cross section: \(\sigma_{fi} \propto |\langle \mathbf{k}_f \phi_f | T | \phi_i k_i \rangle|^2 \).
Convergent Close-Coupling theory

Scattering

- Projectile-target wavefunction is expanded as

\[
| \psi_i^{(+)} \rangle \approx I_T^{(N)} | \psi_i^{(+)} \rangle = \sum_{n=1}^{N} | \phi_n F_{ni} \rangle + \ldots \tag{1}
\]

- Solve for \(T_{fi} \equiv \langle k_f \phi_f | V | \psi_i^{(+)} \rangle \) at \(E = \varepsilon_i + \epsilon_{k_i} \),

\[
\langle k_f \phi_f | T | \phi_i k_i \rangle = \langle k_f \phi_f | V | \phi_i k_i \rangle \\
+ \sum_{n=1}^{N} \sum \int d^3k \frac{\langle k_f \phi_f | V | \phi_n k \rangle \langle k \phi_n | T | \phi_i k_i \rangle}{E + i0 - \varepsilon_n - \epsilon_k} . \tag{2}
\]

- Cross section: \(\sigma_{fi} \propto |\langle k_f \phi_f | T | \phi_i k_i \rangle|^2 \).
Comparison with experiment

$e^-\text{-H ionisation}$

- $e^-\text{-H total ionisation: } \sigma_{\text{ion}} = \sum_f \sigma_{fi} \text{ for } \varepsilon_f > 0$

![Graph showing cross section vs. total energy]
e^−-He(1^1S) ionisation

- e^−-He total ionisation: $\sigma_{\text{ion}} = \sum_f \sigma_{fi}$ for $\varepsilon_f > 0$

[Bray and Fursa, JPB 44, 061001 (2011)]
e^−-N^{5+}(2^3S) ionisation

e^−-N^{5+} total ionisation: \(\sigma_{\text{ion}} = \sum_f \sigma_{fi} \) for \(\varepsilon_f > 0 \)

Positron scattering on molecular hydrogen

$e^+ - H_2$ collisions: total cross section

Photoionisation

total single and double photoionisation of He

![Graphs showing photoionisation cross sections for different processes.](image)

- e^--H ionisation
- e^--He-like atom/ion ionisation
- e^+-H$_2$

Introduction

Convergent Close-Coupling theory

Comparison with experiment

Concluding remarks

Photoionisation

Igor Bray <I.Bray@curtin.edu.au>

CCC Approach to collisions
Close-coupling methods “solve” quantum collision systems for one- and two-electron atomic targets:
- R-matrix with pseudostates (Bartschat, Badnell,)
- Time-dependent close-coupling (Pindzola, Colgan,)
- Convergent Close-Coupling (Fursa, Kadyrov, Bray,)

Considerable recent progress with light molecules
Complex atoms and molecules is a work in progress
Concluding remarks

- Close-coupling methods “solve” quantum collision systems for one- and two-electron atomic targets:
 - R-matrix with pseudostates (Bartschat, Badnell,)
 - Time-dependent close-coupling (Pindzola, Colgan,)
 - Convergent Close-Coupling (Fursa, Kadyrov, Bray,)

- Considerable recent progress with light molecules

- Complex atoms and molecules is a work in progress
Concluding remarks

- Close-coupling methods “solve” quantum collision systems for one- and two-electron atomic targets:
 - R-matrix with pseudostates (Bartschat, Badnell,)
 - Time-dependent close-coupling (Pindzola, Colgan,)
 - Convergent Close-Coupling (Fursa, Kadyrov, Bray,)
- Considerable recent progress with light molecules
- Complex atoms and molecules is a work in progress